If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-94x+1=0
a = 1; b = -94; c = +1;
Δ = b2-4ac
Δ = -942-4·1·1
Δ = 8832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8832}=\sqrt{64*138}=\sqrt{64}*\sqrt{138}=8\sqrt{138}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-94)-8\sqrt{138}}{2*1}=\frac{94-8\sqrt{138}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-94)+8\sqrt{138}}{2*1}=\frac{94+8\sqrt{138}}{2} $
| 5x-11=71 | | –27d+18=72 | | 3x/2-15/2=2x/3-5/3 | | x+.03x=182120 | | 8/7x-19/3=1/7x+14/3 | | 45c–73=–28 | | 81b+15=–471 | | (7-0.5y^2+4)^2+y^2=22 | | 2/5x+5=1 | | a=4/3a | | 1.8=6n-3.2=76 | | 13-2x=13x+2 | | 3x=7(x-8)-12 | | X/x-2=2+2/x-2 | | 2(9x-6)=17x+11 | | 4n+5+n=50 | | 3x=4(x-8)-12 | | 4a-20a^2=4a-20a^2 | | 2x+2+2x=2+3x-8 | | (t-5)(t+7)=0 | | .25a-(12/8)=4 | | 17y=7y+30 | | 35a–83=–13 | | 1.6x-3=-9.4 | | 2k+2=-13-13k | | a-15=4–3 | | y-y2+y3-y4=y5 | | 5/x+2=2/x-1 | | 18x+6=9-3x | | 0.8y+1.6=0.6y-1 | | -x/5+6-8=18 | | 21-16t=4t-14 |